Direct reprogramming and biomaterials for controlling cell fate
نویسندگان
چکیده
Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.
منابع مشابه
I-5: Fifteen Years after Dolly: The Perspectives on Cellular Reprogramming
s:1202:"It is a truly amazing time to developmental biology. During recent decades, three important breakthroughs have been developed: (i) isolation of stem cells from embryo, (ii) animal cloning by nuclear transfer (NT), and (iii) and induced pluripotent stem cells (iPS). Considering these three approaches of "Cellular Reprogramming", it seems that the required elements for cell therapy now ex...
متن کاملPolymers to direct cell fate by controlling the microenvironment.
Enhanced understanding of the signals within the microenvironment that regulate cell fate has led to the development of increasingly sophisticated polymeric biomaterials for tissue engineering and regenerative medicine applications. This advancement is exemplified by biomaterials with precisely controlled scaffold architecture that regulate the spatio-temporal release of growth factors and morp...
متن کاملReprogramming cell fate: a changing story
Direct reprogramming of adult, lineage-determined cells from one cell fate to another has long been an elusive goal in developmental biology. Recent studies have demonstrated that forced expression of lineage-specific transcription factors in various differentiated cell types can promote the adoption of different lineages. These seminal findings have the potential to revolutionize the field of ...
متن کاملThe Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation.
Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein De...
متن کاملSmall molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming.
Despite the great potential of stem cells for basic research and clinical applications, obstacles - such as their scarce availability and difficulty in controlling their fate - need to be addressed to fully realize their potential. Recent achievements of cellular reprogramming have enabled the generation of induced pluripotent stem cells (iPSCs) or other lineage-committed cells from more access...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2016